Automated Computer Classifier of Diabetic Retinopathy [ID 15015]



With an ever-increasing number of people being diagnosed with diabetes, it is imperative that new technologies be developed to effectively and efficiently monitor the disease and its associated comorbidities—including diabetic retinopathy, one of the leading causes of new blindness diagnoses in the U.S.  Early diagnosis and targeted treatment of this condition is imperative in order to delay or prevent vision loss, making technologies that are able to accurately identify the early stages of diabetic retinopathy highly valuable. 


Researchers at Ohio University have developed a computer-assisted technology capable of detecting, classifying and monitoring diabetic retinopathy.  Using machine learning techniques, digital photographs are manipulated in a manner that provides enhanced visualization of retinal blood vessels without the use of injected, florescent dyes to non-invasively detect and stage the disease.  The technology provides over 98% classification accuracy for discriminating healthy normal retina (top) from non-proliferative diabetic retinopathy (NPDR; middle) and proliferative diabetic retinopathy (PDR; bottom).